Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

»ç¶÷ÇôÆíÆò»óÇǼ¼Æ÷¾ÏÁ¾¼¼Æ÷¿¡¼­ proteasome ¾ïÁ¦Á¦ÀÎ lactacystin¿¡ ÀÇÇØ À¯µµµÈ ¼¼Æ÷ÀÚ¸ê»çÀÇ ±âÀü¿¡ ´ëÇÑ ¿¬±¸

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells

´ëÇѱ¸°­³»°úÇÐȸÁö 2009³â 34±Ç 3È£ p.261 ~ 276
¹éöÁß, ±è±Ôõ, ±èÀηÉ, À̽ÂÀº, °ûÇöÈ£, ¹ÚºÀ¼ö, ÅÂÀÏÈ£, °í¸í¿¬, ¾È¿ë¿ì,
¼Ò¼Ó »ó¼¼Á¤º¸
¹éöÁß ( Baek Chul-Jung ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
±è±Ôõ ( Kim Gyoo-Cheon ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
±èÀηɠ( Kim In-Ryoung ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
À̽ÂÀº ( Lee Seung-Eun ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
°ûÇöÈ£ ( Kwak Hyun-Ho ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
¹ÚºÀ¼ö ( Park Bong-Soo ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­ÇغÎÇб³½Ç
ÅÂÀÏÈ£ ( Tae Il-Ho ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­³»°úÇб³½Ç
°í¸í¿¬ ( Ko Myung-Yun ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­³»°úÇб³½Ç
¾È¿ë¿ì ( Ahn Yong-Woo ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±¸°­³»°úÇб³½Ç

Abstract

Sreptomyces¶ó´Â ¼¼±Õ¿¡¼­ ÃßÃâÇÑ lactacystinÀº ¼±ÅÃÀûÀÎ proteasome ¾ïÁ¦Á¦·Î¼­ ¸¹Àº ¿¬±¸¿¡¼­ »ç¿ëµÇ¾îÁ® ¿Ô´Ù. Proteasome ¾ïÁ¦Á¦´Â ÃÖ±ÙÀÇ ¸¹Àº ¿¬±¸¸¦ ÅëÇؼ­ ¾Ï¼¼Æ÷Áõ½ÄÀÇ ¾ïÁ¦¿¡ ´ëÇÑ È¿°ú°¡ Áõ¸íµÇ¾úÀ¸¸ç, ƯÈ÷ ´Ù¸¥ Ç×¾ÏÁ¦¿Í º´¿ëó¸® ½Ã, »óÈ£ÀÛ¿ë¿¡ ÀÇÇÑ »ó½ÂÈ¿°ú°¡ ÀÖ´Ù°í ¾Ë·ÁÁ® ÀÖ´Ù. ÇöÀç proteasome ¾ïÁ¦Á¦´Â »õ·Î¿î °­·ÂÇÑ Ç×¾ÏÁ¦·Î¼­ ºÐ·ùµÇ¾î ÀÖ´Ù. º» ¿¬±¸´Â »ç¶÷ÇôÆíÆò¼¼Æ÷¾ÏÁ¾¼¼Æ÷(SCC25 cells)¿¡¼­ lactacystinÀÇ ¼¼Æ÷µ¶¼º°ú ¼ºÀå¾ïÁ¦ È¿°ú, ±×¸®°í ¼¼Æ÷ÀÚ¸ê»çÀÇ À¯µµ¿¡ ´ëÇÑ ºÐÀÚ»ý¹°ÇÐÀû ±âÀüÀ» ¹àÈ÷±â À§ÇØ ½ÇÇèÀ» ½ÃÇàÇÏ¿´´Ù. SCC25 ¼¼Æ÷, »ç¶÷Á¤»ó°¢È­¼¼Æ÷ (HaCaT cells) ±×¸®°í »ç¶÷Ä¡Àº¼¶À¯¸ð¼¼Æ÷(HGF-1 cells)ÀÇ »ýÁ¸À² ÃøÁ¤Àº MTT¹ýÀ» ½ÃÇàÇÏ¿´°í, SCC25 ¼¼Æ÷ÀÇ ¼ºÀå¾ïÁ¦¸¦ È®ÀÎÇϱâ À§Çؼ­´Â clonogenic assay¸¦ »ç¿ëÇÏ¿´´Ù. lactcystinÀÌ SCC25 ¼¼Æ÷¿¡¼­ ¼¼Æ÷ÀÚ¸ê»ç°¡ À¯µµµÇ´ÂÁö¸¦ È®ÀÎÇϱâ À§Çؼ­ hoechst ¿°»ö¹ý, hemacolor ¿°»ö¹ý ±×¸®°í TUNEL¹ýÀ» ½ÃÇàÇÏ¿´´Ù. ±×¸®°í SCC25 ¼¼Æ÷¿¡ lactacystinÀ» Àû¿ëÇÑ ÈÄ, Western blot ºÐ¼®, ¼¼Æ÷¸é¿ªÈ­Çп°»ö, °øÃÊÁ¡·¹ÀÌÀúÁÖ»çÇö¹Ì°æ °Ë°æ, FACScan flow cytometry, »ç¸³Ã¼¸· ÀüÀ§º¯È­, proteasome È°¼ºµµ ÃøÁ¤ µîÀ» ½ÃÇàÇÏ¿´´Ù. LactacystinÀ¸·Î ó¸®µÈ SCC25 ¼¼Æ÷´Â ½Ã°£ ¹× ¿ë·® ÀÇÁ¸ÀûÀÎ ¼¼Æ÷»ýÁ¸À²ÀÇ °¨¼Ò, ¿ë·®ÀÇÁ¸ÀûÀÎ ¼¼Æ÷¼ºÀå¾ïÁ¦ ±×¸®°í ¼¼Æ÷ÀÚ¸ê»ç¿¡ ÀÇÇÑ ¼¼Æ÷Á×À½À» º¸¿´´Ù. Èï¹Ì·Ó°Ôµµ lactacytinÀº Á¤»ó¼¼Æ÷ÀÎ HaCat ¼¼Æ÷¿Í HGF-1 ¼¼Æ÷¿¡¼­´Â ¼¼Æ÷µ¶¼ºÀ» ÀüÇô º¸ÀÌÁö ¾Ê¾Ò´Ù. ±×¸®°í lactacystinÀÌ Àû¿ëµÈ SCC25¼¼Æ÷¿¡¼­ ÇÙ ÀÀÃà, DNAÀÇ Á¶°¢³², »ç¸³Ã¼¸·ÀüÀ§¿Í proteasome È°¼ºµµÀÇ °¨¼Ò, DNA ¾çÀÇ °¨¼Ò, cytochrome cÀÇ »ç¸³Ã¼¿¡¼­ÀÇ ¼¼Æ÷Áú·ÎÀÇ À¯¸®, AIF¿Í DFF40 (CAD)ÀÇ ÇÙÀ¸·ÎÀÇ À̵¿, BaxÀÇ Áõ°¡, caspase-7, caspase-3, PARP, lamin A/C ±×¸®°í DFF45 (ICAD)ÀÇ È°¼ºÈ­ ȤÀº Æı«¿Í °°Àº ¾ÆÁÖ ´Ù¾çÇÑ ¼¼Æ÷ÀÚ¸ê»ç Áõ°Å¸¦ º¸¿´´Ù. Flow cytometry ºÐ¼®¿¡¼­´Â CDK ¾ïÁ¦Á¦ÀÎ p21WAF1/CIP1¿Í p27KIP1ÀÇ ¹ßÇö Áõ°¡¿Í °ü°èÀÖ´Â °ÍÀ¸·Î ÃßÁ¤µÇ¾î Áö´Â G1 ¼¼Æ÷ÁÖ±â Á¤Áö¸¦ º¸¿´´Ù. ÀÌ·¯ÇÑ °á°ú´Â lactacytinÀÌ SCC25 ¼¼Æ÷¿¡¼­ G1 ¼¼Æ÷ÁÖ±âÁ¤Áö¿Í proteasome, »ç¸³Ã¼ ¹× caspase °æ·ÎÀÇ ¿¬¼Ó¹ÝÀÀÀ» ÅëÇÑ ¼¼Æ÷ÀÚ¸ê»ç¸¦ À¯µµÇÔÀ» ¸íÈ®ÇÏ°Ô Áõ¸íÇÏ°í ÀÖ´Ù. ÀÌ¿Í °°Àº ¼¼Æ÷ÁÖ±â Á¤Áö¿Í ¼¼Æ÷ÀÚ¸ê»ç À¯µµ´ÉÀº lactacytinÀÌ »ç¶÷ÇôÆíÆò»ó ÇǼ¼Æ÷¾ÏÁ¾ÀÇ »õ·Î¿î Ä¡·áÀü·«À¸·Î¼­ÀÇ °¡´É¼ºÀ» Á¦°øÇÑ´Ù°í »ý°¢ÇÑ´Ù.

Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, p21WAF1/CIP1 and p27KIP1. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.

Å°¿öµå

¼¼Æ÷ÀÚ¸ê»ç;»ç¶÷ÇôÆíÆò»óÇǾÏÁ¾
Apoptosis;Proteasome inhibitor;Lactacystin;Human tongue squamous carcinoma

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

KCI